

Installation & Operating Manual (IOM) JAW-FLEX Coupling

Series: L,RFC,RRJ,SW,H,RRL,RRS,SWQ,HR,SWS

INDEX

		Page No
1.	Introduction & General Guidelines	02
2.	Before installation information	02
3.	Installation Information	04
	3.1 Finish Bore Instruction	04
	3.2 Hub Mounting	04
	3.3 Shaft Alignment	06
	3.4 Final Assembly	09
4.	Safety, General Hazard & Environment	10
5.	Inspection & Periodic Maintenance	10
6.	Spares Management & Complaint Handling	11
7.	Breakdown & Trouble-shoot	14
8.	Marking Details	15
9.	Declaration of conformity	16

1. Introduction & General Guidelines

- Jaw flex couplings are designed to transmit torque between drive and driven shaft using rubber element, which compensate radial, angular and axial misalignment and reduce the effect of socks & vibrations.
- This manual will help you to install and maintain Jaw flex couplings before installing/disassembling of coupling. It is advisable to read the manual carefully before starting the work.
- Symbol description :

Caution person may get injured

Damage the product

Pay attention

Potentially explosive warning

2. Before installation information

- RN couplings are delivered by RTPL as assembled condition which consists components as shown in fig. 1.1 & 1.2.
- Inspect coupling assembly for visible damage, if you found contact RATHI.
- Dismantle the coupling; remove protective coating/lubricants from coupling components.

RRS				Н			swq			
Part No.	Component	Qty	Part No. Component C		Qty.	Part No.	Component	Qty.		
1	Driving Hub	01	1	Driving Hub	01	1	Hex HD Bolt	06		
2	Screw	01	2	Screw	01	2	Driving Hub	01		
3	O/S Ring	01	3	O/S Ring	01	3	Spacer	02		
4	Snap Wrap	14	4	Snap Wrap	14	4	T Cushion	06		
5	Spacer	01	5	Spacer	01	5	O/S Ring	01		
6	Driven Hub	01	6	Driven Hub	01	6	Screw	03		
	4	6	1 2	3		7	Driven Hub	01 ®		

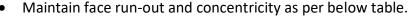
Fig 1.1

			L	RFC	RRJ
Part No.	Component	Qty.	② ②	2	2
1	Driving Hub	01		1	
2	Spider	01			
3	Driven Hub	01			

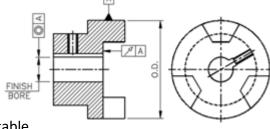
sw				HR		SWS			
Part No.	Component	Qty.	Part No.	Component	Qty.	Part No.	Component	Qty.	
1	Driving Hub	01	1	Hex HD Bolt	44	1	Driving Hub		
2	Snap Wrap	01	2	Driving Hub	01	2	Spacer		
3	O/S Ring	01	3	O/S Ring	01	3	Hex HD Bolt		
4	Screw	03	4	Allen HD Bolt	11	4	Hex HD Bolt		
5	Driven Hub	01	5	Driving Adaptor	01	5	O/S Ring		
			6	Cushion	01	6	Jaw Body		
			7	I/S Ring	01	7	T Cushion		
			8 Driven Ada		01	8	Driven Hub		
			9	Driven Hub	01	9	Hex HD Bolt		
	2	5	1 2 3	46678	2000	2 3 4 5			

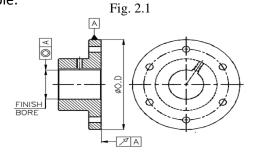
Fig 1.2

3. Installation Information


 Ensure the system is disconnected from electrical connection and other possible energy transmission before starting the work.

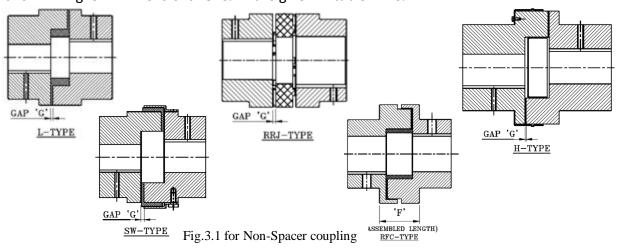
3.1 Finish Bore Instruction (Fig. 2.1 & 2.2)


 Hub finish bores machined by customer with reference to flange outside diameter.



 Finish bore strictly done within specified limit (H7, Js9).

Outside diameter	Face run-out/
(mm)	Concentricity(mm)
10-180	0.04
180-400	0.08
400-630	0.1



- Mark the keyway centre line such that keyway should
 Fig.2.2
 come between two jaws (For L, SW, RRS, H, RFC, RRJ & RN hubs, refer Fig. 2.1) and between two holes (For SWQ, SWS & HR hubs, refer Fig. 2.2).
- Provide set screw at distance LTB /2. If it is not possible, suitable distance nearer to midpoint of the length through bore (LTB) is provided.

3.2 Hub Mounting.

- Mount hubs/adapters on their respective shafts with keys such that the shaft ends are flush with inner face of the adapter & tighten the set screw over the keys.
- Insert the spider in one of the hub. Bring both the coupling hubs (along with equipments) closer so as to maintain gap `G' as shown in fig. 3.1 and to maintain assembled length `F' as shown in fig. 3.1. Dimensions `G' & 'F' are given in table 2.1 & 2.2.

- In case of Non-spacer couplings the distance between shaft end (DBSE) is equal to the total length of the coupling less length through bore of both the hubs.
- In case of spacer type of couplings, the spacer length is normally equal to the distance between shaft ends of the equipments. Refer fig. 2.1 & 2.2.

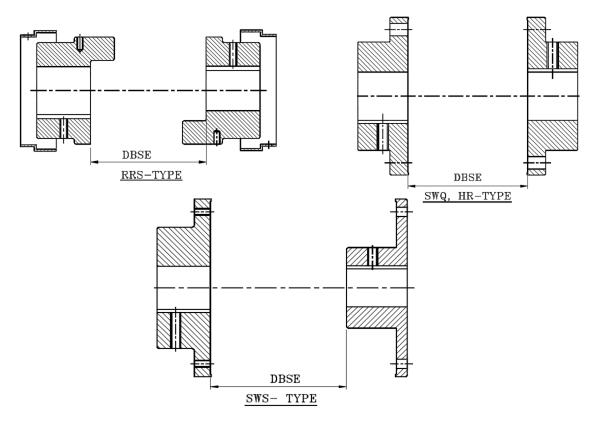


Fig.3.2 for Spacer-type coupling

- For normal applications the shaft ends should be flush with inner face of hub. They can protrude beyond the inner face of hub or remain inside if required, but sufficient gap should be allowed to take care of end float of both shafts (i.e. axial misalignment)
- For H & HR couplings Insert the inner ring before bringing the equipments to their final mounting positions.
- In case of couplings with outer ring (i.e. SW, SWS, RRS, SWQ, H & HR) mount the outer ring on one of the hub and slide it towards the nearest equipment.

3.3 Shaft Alignment.

In order to achieve optimum service life of the coupling, shafts must be aligned.

• Initial misalignment should not be more than 25 % of maximum misalignment (Refer Table 2).

Table 1: Method of misalignment

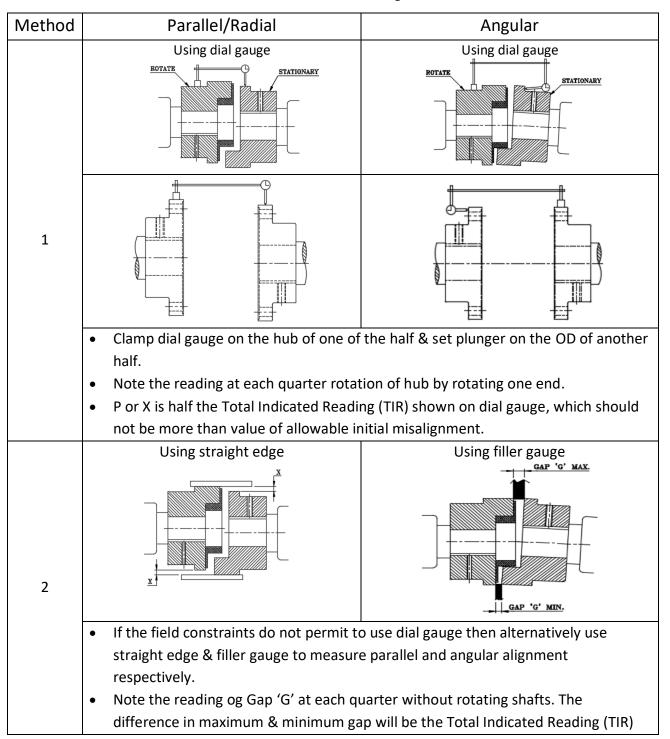


Table 2.1 : PERMISSIBLE MAXIMUM MISALIGNMENTS/TIGHTENING TORQUE (L,SW,SWQ,RRS,H,HR)

Coupling		Per	rmissible Maximum	Mis-alignment		*		
		Angular		Avial	Parallel /	GAP		
Туре	Size	Degree (°)	Total Indicated Reading (TIR) mm	Axial (mm) (±)	Radial 'P' mm	'G' (mm)	Size	Tightening Torque (Nm)
	035	1°	0.27	±0.5	0.4	1	-	-
	050	1°	0.40	±0.5	0.4	1	-	-
L	070	1°	0.6	±1	0.4	2	-	-
	075	1°	0.7	±1	0.4	2	-	-
	095	1°	0.9	±1	0.4	2	M6	5
L,	099	1°	1.1	±1	0.4	2	M6	5
SW,	100	1°	1.1	±1	0.4	2	M6	5
	110	1°	1.4	±1.5	0.4	3	M8	12.5
RRS,	150	1°	1.6	±1.5	0.4	3	M10	25
SWQ-	190	1°	2.0	±1.5	0.4	3	M10	25
226	225	1°	2.2	±1.5	0.4	3	M12	44
	226	1°	2.4	±1.5	0.4	3	M12	44
L,SW,	276	1°	2.7	±1.5	0.4	3	M12	44
SWQ,	280	1°	3.3	±1.5	0.4	3	M14	70
	295	1°	4.1	±1.5	0.4	3	M16	107
SWS	2955	1°	4.1	±1.5	0.4	3	M16	107
SW,SWQ	300	1°	4.4	±1.5	0.4	3	M20	215
SWS	350	1°	5.3	±1.5	0.4	3	M20	215
	307	1°	4.4	±1.5	0.4	3	M16	107
H,HR	357	1°	4.9	±1.5	0.4	3	M16	107
	367	1°	5.3	±1.5	0.4	3	M16	107
	407	1°	5.9	±1.5	0.4	3	M16	107
	457	1°	6.8	±1.5	0.4	3	M16	107
	509	1°	7.0	±3	0.4	6	M16	107
	609	1°	7.7	±3	0.4	6	M16	107
	709	1°	8.8	±3	0.4	6	M16	107
HR	809	1°	10.0	±3	0.4	6	M20	215
	911	1°	11.0	±3	0.4	6	M20	215
	# 1013	-	-	-	-	-	-	-
	# 1015	-	-	-	=	-	-	-
	# 1115	-	-	-	=	-	ı	-
	# 1117	-	-	-	-	-	-	-

- In case of RRS couplings, double the values of axial & angular misalignment for corresponding size.
- For RRS (sizes from 095 to 226) Parallel misalignment = 0.005 mm per mm of DBSE
- For eg. If DBSE is 140mm then Parallel misalignment will be, 140X0.005=0.7mm.
- * Gap 'G' in the above table is when angular and axial misalignments are zero.
- # Products are under development, data will be updated later.

GO TO INDEX

Table 2.2: PERMISSIBLE MAXIMUM MISALIGNMENTS (RRJ & RFC)

Cour	oling	Pei	rmissible Maximum	*			
Coupling			Angular	Axial	Parallel /	GAP	Assemble
Туре	Size	Degree (°)	Total Indicated Reading (TIR) mm	(mm) (±)	Radial 'P' mm	'G' (mm)	Length 'F' (mm)
	19	0.8°	0.78	1.6	0.15	2	-
	24	0.8°	0.94	1.8	0.20	2	-
	28	0.8°	1.13	2	0.20	2.5	-
	38	0.9°	1.48	2.2	0.25	3	-
RRJ	42	0.9°	1.68	2.3	0.30	3	-
NNJ	48	1°	2.01	3	0.35	3.5	-
	55	1°	2.22	3	0.35	4	-
	65	1°	2.39	3.5	0.40	4.5	-
	75	1.1°	2.74	3.5	0.45	5	-
	90	1.1°	3.35	4.5	0.50	5.5	-
	7	1°	2.2	±0.2	0.3	-	28
	9	1°	2.4	±0.5	0.3	-	34.5
	11	1°	2.7	±0.6	0.3	-	45
DEC	13	1°	3.3	±0.8	0.4	-	54
RFC	15	1°	4.1	±0.9	0.4	-	60
	18	1°	4.1	±1.1	0.4	-	73
	23	1°	4.4	±1.3	0.5	-	84.5
	28/28A	1°	5.3	±1.7	0.5	-	107.5

• Distance 'F' in above table is given when angular and axial misalignments are zero.

Note:

- Given tightening torques are for the bolts engaging with the spacer & driving/driven hubs.
- Consult M/s RATHI for #-marked sizes.

CUSHION

3.4 Final Assembly

• Ensure equipment is aligned properly.

3.4.1 L, RFC & RRJ

• As the spider has been already inserted in one of the hub while aligning the equipments, no separate procedure is required to be followed.

3.4.2 SW, H

Wrap the snap wrap/cushions of required size in the space between the jaws.
 Then slide the outer ring over the snap wrap/cushions & fix it to the hub with the help of screws/bolts provided along with the washers.

3.4.3 SWQ & HR

- Take the spacer jaw body assembly with the inside ring (Only HR) & outside rings without elastomeric elements.
- Insert spacer assembly in the steps provided in the hubs.
- Tighten the bolts with the torque given in table 2.1 for tightening torque. Wrap the snap wrap/cushions of required size in the space between jaws.
- Slide the outer ring over the snap wrap/cushions accordingly & fix it to the hub with the help of screws/bolts along with the washers.

3.4.4 RRS

- Insert the spacer between RRS hubs as mentioned in clause 3.2
- Wrap/insert the snap wrap/'T' cushions in the space between jaws.
- Slide the outer ring over the snap wrap/T-cushions & fix it to the hub with the help of screws/bolts along with washers.

3.4.5 SWS

- Insert jaw body over the pump side hub.
- Assemble one half of the jaw body with the pump side hub with the help of bolts.
- Slide another jaw body over pump side hub.
 Insert the spacer along with outer ring between motor side hub & jaw body as shown in fig. 4.
- Locate the spacer in steps provided on motor side hub and jaw body and assemble each other with the help of bolts.
- insert the cushions between jaws of jaw bodies
 & fix the outer ring over the cushions.

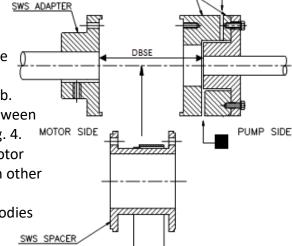


Fig 4. ASSEMBLY OF SWS COUPLING

If the coupling is dynamically balanced, ensure that the match marks are in straight line & unidirectional before bolting the assembly.

Customer must provide required safety guards, RTPL does not supply safety guards or shields.

OUTER RING

GO TO INDEX

4. Safety General Hazard & Environment

4.1 Safety General Hazard

- Proper care and safety must be taken care before work started.
- The relevant safety and environmental regulations must be complied during installation, commissioning, operation, assembly, disassembly and maintenance.

 Coupling must be maintained and/or repaired in the presence of skilled or qulified persons for particular work.

• During installation or maintenance ensure the drive unit is cut off from the power supply and caution notice should be display on switch.

- Immediate stop the drive unit if anything abnormalities observed on coupling (e.g. cracks, chips, wear, or deformation)
- Check all the bolts are tightened as per torque specified in the manual or as specified in the GA drawing.
- The supplied coupling may have to rotate at high speed, it is most important to guard the area in compliance to ATEX and various other local applicable standards.
- This coupling is certified as per ATEX requirement. Please check the suitability of hazardous environment at the time of selection of the coupling or during installation of the coupling.
- All spare parts are to be purchased from manufacturer only.

4.2 Environment

 Our products are comply with EMS standard ISO 14001:2015, any instruction which are impermissible according to standard are not followed.

5. Inspection & Periodic Maintenance

• Jaw-flex couplings can be monitored under running condition as well as under idle condition.

- Inspect the coupling once in 6 months in idle condition or whenever it is taken for periodic maintenance.
- During running condition, it is recommended to check the vibration and noise on either side of the equipments to be under specified limits.
- Visual inspection is recommended to check below defects,
 - Axial, Angular & Parallel misalignments.
 - Bolt loosening.
 - Flexible elements for wear, cracks, swelling or deep impression.
 - Replace bushes immediately if they observed any of the above defects.

GO TO INDEX

6. Spare Management & Complaint Handling

6.1 Spare management

- We recommend to store spare items as given below, in order to have continuos operation and to reduce down time due to failures.
- Spare component list.(Fig.1.1 & 1.2)

Sr.No.	Part descriptions	Components/ part No.	Quantity
1	Rubber Element	Refer Fig. 1.1 & 1.2	1 set

- Spare bushes storage condition should be maintain as below,
 - Away from direct sunlight.
 - Temperature shall be in the range of 20 °C 30 °C.
 - Environment shall be free of extraordinary gases, vapours & chemical contacts, including oils, grease etc.
 - No stress on bond in case of rubber to metal bonded products.

6.2 Complaint Handling

• In case of any failure, for proper root cause, fill up Product Performance Datasheet (PPDS) and provide us alongwith images/videos.

GO TO INDEX

• Product Performance datasheet(PPDS)

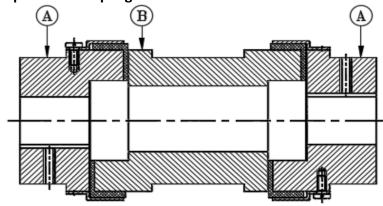
	-	ANNEXURE	Ref.:		Element .	
E	OUP INDIA	Product Performance	Data	Date:	Lovejoy	
<u> </u>	Distributor	Sheet (PPDS)		l .		
<u> </u> ≗	ZR					
Contact Details		Details:Name				
8	Contact P					
1 8	Cell No	e13011				
°	Email ID					
\vdash	Emaine					
	Product					
1	PO No and	d Date				
! ⊜	Invoice No) & Date				
Supply details	Ref Drawin	ng No				
춫	Coupling 9	Serial No.				
👼	Logo: RA1	THI/Lovejoy/RTFL/OTHER				
Ì	Qty purcha	sed				
ĺ	Qty Failed					
<u></u>	Application	n Details: Driver/Driven				
1 2	Equipment					
	Installation	n Date				
Service Details	Failure Dat	te				
Ľ"	Approx ser	rvice life				
\sqsubseteq						
į		ełKeyway machining by :				
į	RTPL/Cu					
į	Press fit	nt: Slide fit #Interference#				
ļ		Hub fitment: Mallet /				
ļ	1	leating / Hydraulic				
1		ightening Method: Torque				
}	Wrench / S					
	 Tiahtenina	Torque values				
į						
details	Power Rat	ing: KW/RPM/Torque				
Installation	Start/stop	frequency				
∮ ≝ 2						
2	Temperatu	ıre: •C				
1	Dutu Head	Da.:				
	Duty: Hrs /	Day				
į	Alignment					
į		ılar/Parallel				
į		after failure:				
l		ılar/Parallel				
!		llation Instruction: Not followed				
1	Installation					
		iood/Excellent				
					PAGE 1 OF 2	

Lubrication condition, if applicable	
Breaking of components: Yes/No	
Possible Sequence of Component Failure	
Damage of components: Yes/No	
Loosening of fasteners: Yes/No Overload/Sudden Peak: Yes/No Loosening of foundation bolts:	
Overload/Sudden Peak: Yes/No	
ूष्ट Loosening of foundation bolts:	
Loosening of attached piping / ducting: Yes/No	
Replacement Status : If replaced	
whether Coupling or Spares	
Customer analysis of the Failure causes	
(Attach separate sheet, if required)	
Failed product photos : Attached / Not attached Failed product being returned to RTPL : Yes / No RTPL visit required: Yes/No Replacement required: Yes/No RPL / Distributor, Remarks if any	
Failed product being returned to	
Ř RTPL: Yes / No	
RTPL visit required: Yes/No	
Replacement required: Yes/No	
ZR / Distributor Remarks if any	
Details of any other Coupling	
Previously in use	
Previously in use Failure history Bearing condition of Driver & Driven	
- Bearing condition of Briver & Briver	
units (Smooth/Noisy/Vibrations)	PAGE 2 OF 2

GO TO INDEX

7. Breakdown & Trouble Shooting

SR. NO.	FAILURE MODE	PROBABLE CAUSES	CORRECTIVE ACTIONS
1	Worn out cushions	Excessive	Replace cushions &
_	Shaft bearing failure	misalignments.	Realign the coupling.
		Torsional vibration	
2	Fatigue of scushions	Excessive starts and	Perform torsional analysis
2	Overheated cushions	stops	Use larger coupling
		High peak load	
3	Swollen or cracked cushions	Chemical attack	Use more chemically resistant spider/cushions (*)
4	Distorted or deteriorated cushions	Excessive heat	Use more heat-resistant cushions (*)
5	Shattered cushions	Low temperature	Use special low temperature cushions (*)
6	Loose hubs on shaft with sheared keys.	Torsional shock overload	Find & eliminate causes of overload.
7	Severe hub corrosion	Chemical attack	Coat hub with anticorrosive coating (*)


(*) - Consult M/s RATHI if required

8. Marking Details

• The ATEX marking for JAW coupling will be given on outer surface or front side (Fig. 5).

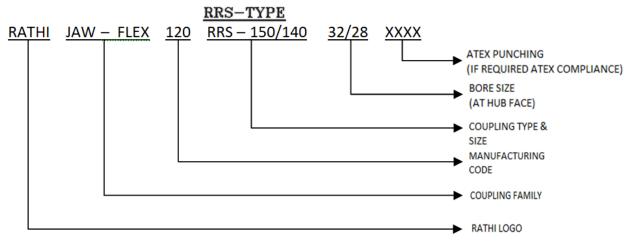


Fig. 5. Marking example

ATEX Punching sample

- Similarly for other JAW-FLEX coupling series the marking will be as per below,

For RFC couplings, RATHI JAW-FLEX [1] [2] [3] C € W II 2GD -25°C+120°C

For RRJ couplings, RATHI JAW-FLEX [1] [2] [3] (() II 2GD -30°C+120°C

For RN couplings, RATHI JAW-FLEX [1] [2] [3] C€ W II 2GD -25°C+120°C

Where,

- 1. Manufacturing code e.g. 129 for December 2019
- 2. Product code e.g. RRS-150/140
- 3. Finish bore size code e.g. 32

Please note that, operating temperature in the marking will differ as per type of elastomers for respective coupling series.

9. Declaration of Conformity

RAIH		ATEX							
$D\epsilon$	Declaration of Conformity								
	2014/34/EU								
Customer Name		Certificate No.							
PO No.		Date							
1) Declaration relating to:									
Type :	Metallic (Non-Disc) Cou	upling							
Size :									
2) Manufactured and assessed	by								
Rathi Transpower Pvt.Ltd	., Gaia Apex, S. No. 33/2D, V	Viman Nagar, Pune 411 014 (INDIA).							
3) Notified by :									
4) This product fulfills all the r directive 2014/34/EU (ATE		egory 2 GD equipment in accordance with							
The design complies with IS File No. RG 003/20	O 80079-36 AND ISO 80079	9-37 and is fully documented in Technical							
	producing arcs, sparks or hot cordance with ISO 80079-36	surface which may cause ignition and AND ISO 80079-37.							
6) The required marking of the product is specified in Technical File No. RG 003/20 and includes the distinctive community marks.									
7) Coupling without the 🗟 marking must not be used in potential Explosive Atmosphere.									
8) Manufacturing is controlled by an ISO 9001 registered system.									
9) Approved signatories for and	9) Approved signatories for and on behalf of Rathi Transpower Pvt.Ltd.								
Quality Inspector (Date:)	Quality Manager () Date :							

RATHI TRANSPOWER PVT.LTD. Gaia Apex,S No 33/2D,Viman Nagar Pune, 411014

Format No: 3QA-F-33 Rev 1

Declaration of Incorporation E.C. Machinery Directive (2006/42/EC)

Section 1.0 - Machinery Description:

Flexible Power Transmission Couplings Types: Metallic (Non-Disc) Coupling

Series:

Section 2.0 - Applicable Harmonized Standards
ISO13709(API 610)for centrifugal pumps
ISO14691 couplings for-General-purpose applications
ISO10441(API 671)(opt)couplings for-Special-purpose applications

Section 3.0 - Declaration:

We, Rathi Transpower Pvt. Ltd. declare that under our sole responsibility for the supply of the machinery defined in Section 1.0 above, the said machinery parts are intended to be incorporated into other machinery or assembled with other machinery to constitute machinery as covered by this Directive.

The machinery parts, covered by this declaration must not be put into service until the machinery into which it is to be incorporated has been declared in conformity with the provisions of the Directive.

Signed Date :

(Quality Manager)

Format No: 3QA-F-33 Rev 1